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Abstract
The survival of an increasing number of species is threatened by climate change:
20%–30% of plants and animals seem to be at risk of range shift or extinction if global
warming reaches levels projected to occur by the end of this century. Plant range
shifts may determine whether animal species that rely on plant availability for food
and shelter will be affected by new patterns of plant occupancy and availability.
Brown bears in temperate forested habitats mostly forage on plants and it may be
expected that climate change will affect the viability of the endangered populations
of southern Europe. Here, we assess the potential impact of climate change on seven
plants that represent the main food resources and shelter for the endangered popu‐
lation of brown bears in the Cantabrian Mountains (Spain). Our simulations suggest
that the geographic range of these plants might be altered under future climate
warming, with most bear resources reducing their range. As a consequence, this
brown bear population is expected to decline drastically in the next 50 years. Range
shifts of brown bear are also expected to displace individuals from mountainous
areas towards more humanized ones, where we can expect an increase in conflicts
and bear mortality rates. Additional negative effects might include: (a) a tendency to
a more carnivorous diet, which would increase conflicts with cattle farmers; (b) lim‐
ited fat storage before hibernation due to the reduction of oak forests; (c) increased
intraspecific competition with other acorn consumers, that is, wild ungulates and
free‐ranging livestock; and (d) larger displacements between seasons to find main
trophic resources. The magnitude of the changes projected by our models empha‐
sizes that conservation practices focused only on bears may not be appropriate and
thus we need more dynamic conservation planning aimed at reducing the impact of
climate change in forested landscapes.
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1  | INTRODUCTION

The survival of an increasing number of species is threatened by cli‐
mate change, yet 20%–30% of plant and animal species evaluated in
climate change studies seem to be at risk of range shift or extinction
if global warming reaches levels projected to occur by the end of this
century (Brook, Sodhi, & Bradshaw, 2008; Intergovernmental Panel
on Climate Change, 2014; Lenoir & Svenning, 2015; Walther, 2010).
Indeed, climate change has already contributed tomanifest changes in
the geographic distribution and abundance of wild plants and animals
over the past several decades (e.g., Root et al., 2003; Parmesan, 2006;
Monzón, Moyer‐Horner, & Palamar, 2011; Bellard, Bertelsmeier,
Leadley, Thuiller, & Courchamp, 2012; Lenoir & Svenning, 2015).

Predicting the response of plants and animals to climate change
has become an extremely active field of research, as predictions
(a) play a crucial role in alerting researchers and decision makers to
potential future risks and (b) can support the development of pro‐
active strategies to reduce climate change impacts on biodiversity
(Bellard et al., 2012). Some of the most vulnerable organisms to the
alterations produced by climate change (e.g., warming tempera‐
tures and decreasing precipitation during the growing season; IPCC,
2013) are plants, given their limited ability to physically follow suit‐
able environmental conditions (Parmesan, 2006). One of the most
noticeable responses of plants to climatic change is a shift in their
geographic ranges (Malanson & Alftine, 2015). In particular, forests
in temperate regions will be increasingly exposed to drought in the
21st century (Müller‐Haubold, Hertel, Seidel, Knutzen, & Leuschner,
2013), which may accelerate rates of tree decline and mortality in
Europe (Bréda, Huc, Granier, & Dreyer, 2006; Müller‐Haubold et al.,
2013). Plant range shifts may determine whether those animal spe‐
cies that rely on plant availability for both food and shelter will be
affected by new patterns of plant occupancy/abundance (Cianfrani,
Broennimann, Loy, & Guisan, 2018; Nielsen, McDermid, Stenhouse,
& Boyce, 2010; Shen et al., 2015; Simons‐Legaard, Harrison, &
Legaard, 2016; Zang et al., 2017) and/or by plant population declines
or extinction cascades via bottom‐up effects (Roberts, Nielsen, &
Stenhouse, 2014). In the case of small, isolated and/or endangered
animal populations, the effects of climate change on their trophic
resources may considerably override conservation and management
efforts performed at other levels, for example, reduction of human‐
wildlife conflicts, threat of anthropogenic footprints and activities.

Brown bears (Ursus arctos) dedicate considerable effort to forag‐
ing on plants, particularly in temperate forested habitats (Bojarska
& Selva, 2012), with bears in south‐western Europe being among
the most vegetarian of the European populations (Bojarska & Selva,
2012). Accordingly, bears in the Cantabrian Mountains (NW Spain)
show high proportions of plantmatter in their diet (Naves, Fernández‐
Gil, Rodríguez, & Delibes, 2006): (a) graminoids and forbs dominate
their diet in spring; (b) foods such as fleshy fruits (especially blueber‐
ries Vaccinium myrtillus) become more important in the summer; and
(c) during the early‐autumn hyperphagic period (i.e., the period when
bears spend most of their active time foraging to store fat, which
is essential for successful hibernation and cub production; Farley &

Robbins, 1995, Fernández‐Gil, 2013) and winter, brown bears rely
predominantly on hard mast, mainly acorns (Naves et al., 2006).
Above all, acorns and blueberries represent essential food items
for Cantabrian brown bears and thus, oak forests and formations of
clumped shrubs of blueberries are critical foraging habitats for this
bear population (Naves et al., 2006; Rodríguez, Naves, Fernández‐
Gil, Obeso, & Delibes, 2007). Few studies have focused directly on
potential linkages between climate change and bear trophic plant re‐
sources (Butler, 2012; Roberts et al., 2014; Su et al., 2018), but some
evidence exists that in the small and isolated brown bear population
of Cantabrian Mountains (Rodríguez et al., 2007): (a) changes in bear
diet and land use in relation to changing climate conditions have al‐
ready occurred in the last 30 years; and (b) a trend towards increased
local temperatures over the last few decades has been observed.
Moreover, climate change impacts on vegetation have recently been
reported in other areas of Northern Spain, where several plant spe‐
cies have shown noticeable changes in the phenology of leaf unfold‐
ing, flowering, fruiting and leaf fall (Peñuelas, Filella, & Comas, 2002).

As temperature and snow conditions are among the most im‐
portant factors affecting the feeding ecology of brown bears
(Bojarska & Selva, 2012), it may be expected that climate change will
affect brown bear food habits, for example, through changes in food
availability and foraging behaviour as a result of alterations in plant
distribution and phenology. Changes in the timing and intensity of
fruiting and ripening of fruit and mast, as well as declines in the avail‐
ability of high‐quality fruits, such as Vaccinium sp., may have import‐
ant consequences for brown bear population dynamics (Rodríguez et
al., 2007). Consequently, because climate change may increase the
extinction risk of endangered species already threatened by their
small populations or limited geographic range, a major challenge in
conservation planning for small populations of endangered bears
is to incorporate climate change impacts into species conservation
strategies (Li et al., 2015; Shen et al., 2015).

The aim of this study is to conduct a comprehensive assessment
of the potential impact of climate change on the future distribution
of the brown bear population in the Cantabrian Mountains. Here,
based on a long‐term field survey on bear distribution and the lat‐
est climate projections, we applied both abiotic (i.e., climatic and
geographic) and biotic (i.e., fruits and acorns distribution) variables
to bioclimatic models in order to: (a) forecast the effect of poten‐
tial changes in the spatial distribution of main bear food resources
and shelter on the Cantabrian bear population in this century. With
this aim, we evaluated two climate change scenarios (moderate and
pessimistic) for 2050 and 2070 under different emissions path‐
ways; and (b) evaluated the implication of these changes to the
distribution of this small and isolated bear population.

2  | MATERIALS AND METHODS

2.1 | Study area

Our model projections took into account most of the Cantabrian
range currently occupied by brown bears (Asturias, León and
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Palencia provinces, NW Spain), which is characterized by an Atlantic
climate, at the southern distribution limit of temperate decidu‐
ous forests in Europe, with mild winters and rainy summers (Pato
& Obeso, 2012; Roces‐Díaz, Jiménez‐Alfaro, Álvarez‐Álvarez, &
Álvarez‐García, 2014). The Cantabrian Mountains are characterized
by an oceanic and relatively warm climate, with mean precipitation
exceeding 800 mm/year and reaching more than 2000 mm/year at
the highest elevations. Maximum elevation is 2,648 m a.s.l. and aver‐
age elevation is around 1,100 m (Martínez Cano, González Taboada,
Naves, Fernández‐Gil, & Wiegand, 2016; Naves, Wiegand, Revilla, &
Delibes, 2003). Woodlands mainly consist of deciduous forests of
sessile oak (Quercus petraea), beech (Fagus sylvatica) and chestnut
(Castanea sativa), with bilberry dominating the understory (Pato &
Obeso, 2012). This area also represents the southern limit of the dis‐
tribution of beeches, sessile oaks, pedunculate oak (Quercus robur)
and European white birch (Betula pubescens) (Roces‐Díaz et al., 2014).

The plants investigated include seven species that not only are
important in the diet of Cantabrian brown bears (Fernández‐Gil,
2013; Naves et al., 2006; Rodríguez et al., 2007), that is, blueberries,
beeches, chestnuts, pedunculate oaks, Pyrenean oaks (Q. pyrenaica),
sessile oaks and Scots pines (Pinus sylvestris), but also provide im‐
portant shelter for the species (Mateo‐Sánchez, Cushman, & Saura,
2014; Mateo‐Sánchez et al., 2016; Zarzo‐Arias et al., 2019).

2.2 | Occurrence data collection

2.2.1 | Brown bear

The locations of brown bears were obtained from: (a) direct bear ob‐
servations that were georeferenced by personnel of the Principado
de Asturias and Junta de Castilla y León, primarily the Patrulla Oso,
that is, the Bear Patrol, of the Principado deAsturias and the Junta de
Castilla y León, aswell as all the other guards of both regional govern‐
ments, by the Asturian Foundation for the Conservation of Wildlife
(FAPAS, Fondo para la Protección de los Animales Salvajes), the FOA
(Fundación Oso de Asturias) and the Brown Bear Foundation (FOP,
Fundación Oso Pardo); and (b) personal georeferenced observations
of the authors (Zarzo‐Arias et al., 2018). The long‐term monitoring
of the Cantabrian population, which started between the end of the
1980s and the beginning of the 1990s is essentially based on yearly
direct sightings and the location of indirect signs of presence, that
is, footprints, fur and scats, records of damage caused by bears to
livestock, beehives, crops, human activities and infrastructures, as
well as camera traps that were randomly located by the FAPAS and
Bear Team during the last twenty years, mainly in forested areas
where bears are less visible (FAPAS/FIEP, 2017). Viewing points
used by rangers and ourselves are evenly distributed over the entire
bear range in the study area. Thus, locations were both the result
of yearly systematic observations and random observations, which
were evenly distributed throughout the seasons. For Castilla y León
(from 1985 to 2017) it was possible to collect 3,130 bear locations,
whereas for Asturias (from 1995 to 2016) 5,654 bear locations were
available (n = 8,784 total brown bear locations; File S1A). Moreover,

following brown bear habitat modelling by Mateo‐Sánchez et al.
(2016) 20,000 random pseudoabsence points were drawn inside the
limits of the study area (Mateo‐Sánchez et al., 2014). Indeed, pres‐
ence–absence models tend to perform better than presence‐only
models and for this reason, artificial absence data (usually called
pseudo‐absences or background data) are usually created (Barbet‐
Massin, Jiguet, Albert, & Thuiller, 2012).

2.2.2 | Woody plants

Weestimated foraging resources from the combination of those plant
species (trees and shrubs) which sequentially provide a food sup‐
ply for brown bears throughout the different seasons. Specifically,
we predict habitat changes for seven species considered to be key
brown bear food resources in the Cantabrian Mountains. Information
on species occurrence was drawn from the Third Spanish National
Forest Inventory, SNFI3 (DGCN, 2001) (File S1B). Few other species
(e.g.,Malus, Prunus and Ramnus spp.) can be important food resources
seasonally (Naves et al., 2006), but it was impossible to forecast their
evolution under climate change scenarios because of the lack of de‐
tailed information on their spatial distribution. The plots of the SNFI3
were surveyed at two different times, that is, once in 1998 (province
of Asturias) and then in 2002–2003 (provinces of Léon and Palencia)
and established at the intersections of a 1 × 1 km grid comprising
four concentric sub‐plots of 5, 10, 15 and 25 m radii, with a minimum
diameter at breast height threshold of 75, 125, 225 and 425 mm re‐
spectively. We defined presence as the occurrence of one or more
live beech trees in any one of the subplots. A total of 8,185 plots
falling within the study area with data on the presence/absence and
prevalence of analysed species were available for analysis (Table 1).

2.3 | Spatial predictor variables

A priori, we identified 19 climate, 13 soil, 13 topography/radiative
and seven species distribution model variables for the tree species
analysed (in the case of the brown bear) which we hypothesized may
influence the distribution of brown bear based on our knowledge of
the species and the study area (Table 2). These variables have been
previously used in different studies to assess species distribution
models (Roberts et al., 2014; Shirk et al., 2018).

TA B L E  1  Plant species considered as possible predictors for the
distribution models. Prevalence = presence/total. Sites
surveyed = 8,185

Species Presences Absences Prevalence

Blueberry 334 7,851 0.0408

Beech 950 7,235 0.1161

Chestnut 1,426 6,759 0.1742

Pedunculate oak 1,872 6,313 0.2287

Pyrenean oak 1,680 6,505 0.2053

Sessile oak 491 7,694 0.0600

Scots pine 842 7,343 0.1029
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TA B L E  2  Environmental variables considered as possible predictors for the distribution models during the 1960–1990 reference period
and in 2050 and 2070 under two future emissions scenarios (RCP 4.5 and RCP 8.5). Variables are grouped by type including climate,
hydrography, population, roads, soil, topography/radiative and species distribution models

Variable Class Description Source Brown bear
Vegetation 
species

BIO_01 Climate Annual mean temperature WorldClim X X

BIO_02 Mean diurnal temperature change (Mean of monthly
[max temp – min temp])

WorldClim X X

BIO_03 Isothermality (BIO_02/BIO_07) (*100) WorldClim X X

BIO_04 Temperature seasonality (standard deviation *100) WorldClim X X

BIO_05 Max temperature of warmest month (°C) WorldClim X X

BIO_06 Min temperature of coldest month (°C) WorldClim X X

BIO_07 Temperature annual range (BIO_05‐BIO_06) (°C) WorldClim X X

BIO_08 Mean temperature of wettest quarter (°C) WorldClim X X

BIO_09 Mean temperature of driest quarter (°C) WorldClim X X

BIO_10 Mean temperature of warmest quarter (°C) WorldClim X X

BIO_11 Mean temperature of coldest quarter (°C) WorldClim X X

BIO_12 Annual precipitation (mm) WorldClim X X

BIO_13 Precipitation of wettest month (mm) WorldClim X X

BIO_14 Precipitation of driest month (mm) WorldClim X X

BIO_15 Precipitation seasonality (Coefficient of variation) WorldClim X X

BIO_16 Precipitation of wettest quarter (mm) WorldClim X X

BIO_17 Precipitation of driest quarter (mm) WorldClim X X

BIO_18 Precipitation of warmest quarter (mm) WorldClim X X

BIO_19 Precipitation of coldest quarter (mm) WorldClim X X

BD Soil Bulk density of the fine earth fraction (<2 mm) (kg/m3) SoilGrids250m X

DB Absolute deep to bed rock (cm) SoilGrids250m X

DB200 Depth to bedrock (R horizon) up to 200 cm (cm) SoilGrids250m X

CEC Cation exchange capacity (cmol+/kg) SoilGrids250m X

CF Coarse fragments (volumetric %) SoilGrids250m X

CLAY Percentage of clay (weight %) SoilGrids250m X

Ph_H2O Soil Ph in H2O solution SoilGrids250m X

Ph_KCl Soil Ph in KCl solution SoilGrids250m X

SAND Percentage of sand (weight %) SoilGrids250m X

SC Soil organic carbon content (mG/ha) SoilGrids250m X

SC_FEF Soil organic carbon content (fine earth fraction) (g) SoilGrids250m X

SILT Percentage of silt (weight %) SoilGrids250m X

R Probability occurrence of R horizon (%) SoilGrids250m X

ASP Topography/
radiative

Aspect PNOA LiDAR X X

CU Curvature PNOA LiDAR X X

PLC Plan curvature PNOA LiDAR X X

PRC Profile curvature PNOA LiDAR X X

SLP Slope PNOA LiDAR X X

TSI Terrain shape index PNOA LiDAR X X

WI Wetness index PNOA LiDAR X X

EDH Euclidean distance to nearest hydrographic network (m) PNOA LiDAR X X

EDP Euclidean distance to nearest population (m) INE X

(Continues)
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We obtained gridded data for all climate variables with a 30‐arc
second resolution (approximate 800 m) from WorldClim (Hijmans,
Cameron, Parra, Jones, & Jarvis, 2005) generated for the 1960–
1990 historical period. The soil variables were compiled from the
SoilGrids250m (Hengl et al., 2017) which provides a collection of
updatable soil property and class maps of the world at a 250 m spa‐
tial resolution based on machine learning algorithms. Topography/
Radiative variables were based on a 30 m resolution digital eleva‐
tion model (DEM) provided by the Spanish National Plan for Aerial
Orthophotography (PNOA; Fomento, 2015). We used the System
for Automated Geoscientific Analyses (SAGA; Conrad et al., 2015)
Geographical Information System (GIS) software (version 3.0.0) was
used to calculate each of the topography/radiative variables from
the DEM. We resampled all climate, soil and topography/radiative
variable raster grids at 250 m resolution by using the nearest neigh‐
bour method. Finally, we extracted the values of all variables at all
sampled locations.

2.4 | Species distribution modelling

We fit species distribution models using the machine learning algo‐
rithm Random Forest (RF; Breiman, 2001). RF is a broadly used clas‐
sification and non‐parametric regression approach that consists of
building an ensemble of decision trees (Gislason, Benediktsson, &
Sveinsson, 2006). The success of this technique is based on the use
of numerous trees developed with different independent variables
that are randomly selected from the complete original set of fea‐
tures (e.g., Deschamps, McNairn, Shang, & Jiao, 2012; Wang, Zhou,
Zhu, Dong, & Guo, 2016). RF also provides a measure of the impor‐
tance of input features through random permutation, which can
be used for feature ranking or selection (Genuer, Poggi, & Tuleau‐
Malot, 2010; Immitzer, Vuolo, & Atzberger, 2016). In machine
learning, spurious data features must be removed before a model
is generated (Hall, 1999). Thus, the variables that are potentially
the most important are selected. For that purpose, WEKA open

source software (Hall et al., 2009) used for fitting the RF algorithm
uses a wrapper methodology to select the subsample of variables
since it usually produces the best results (Zhiwei & Xinghua, 2010).
This methodology of feature selection process selects the subsam‐
ple of variables using a learning algorithm as part of the evalua‐
tion function. The RF technique was applied several times since we
consider a set of a tenfold cross‐validation (i.e., models were fitted
using 90% of the data for training and the remaining 10% for model
evaluation).

2.5 | Model assessment, projection and analysis for
woody plants and bears

We evaluated the model performance for each method and rep‐
licate in several ways including receiver operator curve (AUC),
Matthews Correlation Coefficient (MCC), True Skill Statistic (TSS;
Allouche, Tsoar, & Kadmon, 2006), Cohen's Kappa (Cohen, 1968),
specificity and sensitivity. Calculating Cohen's Kappa required a
binary model, which we created based on a threshold probability
where sensitivity equalled specificity (i.e., we equally weighted er‐
rors of omission and commission). All modelling methods, as an
output variable, report a probability of presence (PoP) for each
species. To convert all other PoPs to a binary presence–absence
output, a threshold PoP was selected for each species. To select
a threshold for presence–absence delineation from the PoP data,
the average of two methods was used: (a) the PoP that maximized
the sum of sensitivity and specificity; and (b) the PoP that mini‐
mized the difference between the absolute values of sensitivity
and specificity.

We projected the fitted models onto spatial projections at a
250 m resolution of the environmental variables reflecting two cli‐
mate change scenarios, that is, moderate and pessimistic (Dyderski,
Paź, Frelich, & Jagodziński, 2017; Harris et al., 2014; IPCC, 2013;
van Vuuren et al., 2011) for 2050 and 2070 under different emis‐
sion pathways. These scenarios are expressed by the representative

Variable Class Description Source Brown bear
Vegetation 
species

EDR Euclidean distance to nearest roads network (m) PNOA LiDAR X

SR_SS Solar radiation in summer solstice (WH/m2) PNOA LiDAR X

SR_EQ Solar radiation in equinox (WH/m2) PNOA LiDAR X

SR_WS Solar radiation in winter solstice (WH/m2) PNOA LiDAR X

SDM_BL SDM Species distribution model of Blueberry X

SDM_BE Species distribution model of Beech X

SDM_CH Species distribution model of Chestnut X

SDM_PO Species distribution model of Pedunculate oak X

SDM_PYO Species distribution model of Pyrenean oak X

SDM_SO Spatial distribution model of Sessile oak X

SDM_SP Spatial distribution model of Scots pine X

Total variables 36 43

TA B L E  2   (Continued)
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TA B L E  3  Relative importance values calculated for environmental variables in species distribution models generated by the tested
machine learning method (RF: random forest)

Variable Class Brown bear Blueberry Beech Chestnut
Pedunculate 
oak

Pyrenean
oak Sessile oak

Scots
pine

BIO_01 Climate 100.00 100.00 100.00 88.89

BIO_02 100.00 100.00 95.24 100.00 90.48 100.00

BIO_03 70.59 100.00 94.74 90.48 95.45 100.00

BIO_04 92.86 76.19 71.43 81.82 83.33

BIO_05 86.36 77.78

BIO_06 71.43

BIO_07 85.71 82.35 76.19 78.95 72.73 66.67 72.22

BIO_08 66.67

BIO_09 73.68

BIO_10 85.71 66.67

BIO_11 68.18

BIO_12 78.57 76.19 63.16 57.14

BIO_13 66.67 57.89 47.62 54.55

BIO_14 38.10 52.63 47.62 59.09 66.67

BIO_15 28.57 47.06 23.81 31.58 33.33 50.00 44.44 33.33

BIO_16 33.33 45.45 44.44

BIO_17 50.00 58.82 28.57

BIO_18 36.36

BIO_19 35.71 41.18 42.86 23.81 27.27 38.89

BD Soil 21.05 14.29 13.64 33.33

DB 10.53 9.52 13.64 0.00 5.56

DB200 5.88 4.76 38.89

CEC 38.10 36.36 27.78 50.00

CF 19.05 15.79 14.29 13.64 27.78

CLAY 0.00 14.29 23.81 27.78

Ph_H2O 42.86 26.32 27.27 38.89

Ph_KCl 23.53 33.33 23.81 16.67 33.33

SAND 0.00 0.00 5.26 14.29 13.64 5.56 0.00

SC 35.29 31.58 31.82

SC_FEF 0.00 4.55 11.11

SILT 0.00 5.26 14.29 16.67

R 5.26 9.52 18.18 16.67

ASP Topography/
radiative

57.14 13.64

CU 19.05

PLC 50.00 14.29

PRC 0.00 4.76

SLP 5.88 0.00 4.76 0.00 5.56

TSI

WI 42.86 5.26 4.76 4.55 5.56

EDH 78.57 36.84 36.36 55.56

EDP 71.43

EDR 71.43

SR_SS 42.86

(Continues)
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concentration pathways (RCP) using values comparing the level
of radiative forcing between the preindustrial era and 2100. The
moderate scenario (RCP4.5) assumes that: (a) climate policies limit
greenhouse‐related emissions and total radiative forcing is stabilized
at 4.5 Wm−2 in the year 2100 without ever exceeding that value in
the previous years (Thomson et al., 2011); and (b) 650 ppm CO2 and 
1.0–2.6°C increase by 2100 and refers to scenario B1 of the IPCC
AR4 guidelines. The pessimistic scenario (RCP8.5) assumes: (a) con‐
tinued increases in greenhouse gases following recent trends reach‐
ing a total radiative forcing of 8.5 Wm−2 in the year 2100 (Riahi et al.,
2011); and (b) 1,350 ppm CO2 and 2.6–4.8°C increase by 2100 and
refers to scenario A1F1 of the IPCC AR4 guidelines (Dyderski et al.,
2017; Harris et al., 2014; IPCC, 2013; van Vuuren et al., 2011).

For the current and future scenarios, we used FRAGSTATS
4.2 (McGarigal, Wan, Zeller, Timm, & Cushman, 2016) to quantify
the area of habitat and degree of habitat fragmentation based on
the binary model. We quantified the suitable habitat area in three
ways including total area (TA) in the study area, mean patch area
(MPA) and largest patch index (LPI; the percentage of the landscape

encompassed by the largest patch). Also, we quantified fragmenta‐
tion using the aggregation index (AI), which equals 0 when the suit‐
able habitat is maximally disaggregated into single grid cell patches
disconnected from all other patches and increases to 1 as suitable
habitat is increasingly aggregated into a single, compact patch. We
also quantified the degree of change for each future scenario rela‐
tive to the 1960–1990 30‐year normal, classifying habitat as gained,
maintained or lost.

3  | RESULTS

Of the 28,874 sites surveyed, brown bears were present at 8,874
sites resulting in a prevalence of 0.3073 (Table 1). As a result of the
feature selection process, 19 of the 36 variables (Table 2) were se‐
lected as the optimal subset size by the RF method (Table 3). Model
performance was excellent (Table 4): AUC = 0.979, MCC = 0.828,
TSS = 0.820, Kappa = 0.828. The sensitivity was 0.866 and specific‐
ity was 0.954. The functional form of the marginal response curve

TA B L E  4  Model fit metrics for species distribution modelling (SDM) using random forest applied to occurrence data within the
Cantabrian Mountain range in North Spain. Model fit metrics included area under the Receiver Operator Curve (AUC), Matthews
Correlation Coefficient (MCC), True Skill Statistic (TSS), Cohen's kappa, sensitivity and specificity. Model fit was assessed on the training
data used to fit the model as well as the withheld test data used for model evaluation. All the values represent the mean tenfold
cross‐validation

Model Data set AUC MCC TSS Kappa Sensitivity Specificity PoP

Brown Bear Test 0.979 0.828 0.820 0.828 0.866 0.954 0.40

Blueberry Test 0.935 0.281 0.524 0.230 0.559 0.965 0.20

Beech Test 0.969 0.709 0.750 0.707 0.790 0.960 0.25

Chestnut Test 0.885 0.441 0.541 0.423 0.658 0.883 0.35

Pedunculate oak Test 0.884 0.482 0.537 0.475 0.673 0.864 0.40

Pyrenean oak Test 0.877 0.491 0.601 0.470 0.732 0.869 0.35

Sessile oak Test 0.921 0.329 0.525 0.290 0.573 0.952 0.30

Scots pine Test 0.951 0.625 0.747 0.611 0.798 0.949 0.20

PoP: probability of presence.

Variable Class Brown bear Blueberry Beech Chestnut
Pedunculate 
oak

Pyrenean
oak Sessile oak

Scots
pine

SR_EQ 47.06 33.33 42.11 38.10

SR_WS 36.84 40.91

SDM_BL SDM

SDM_BE 0.00

SDM_CH

SDM_PO 0.00

SDM_
PYO

7.14

SDM_SO 0.00

SDM_SP 0.00

Total 19 13 20 22 29 26 8 23

TA B L E  3   (Continued)
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for brown bear with a relative importance of variables of >75%
including mean diurnal range (BIO_02), temperature seasonality
(BIO_04), temperature annual range (BIO_07), mean temperature

of warmest quarter (BIO_10), annual precipitation (BIO_12) and
Euclidean distance to the nearest hydrographic network (EDH) are
shown in Figure 1.

F I G U R E  1  Marginal response curves for the six variables included in the brown bear species distribution model and with a relative
importance of variables >75% The normalized probability of presence (PoP) is shown as a function of each variable while holding all other
variables at their median values at presence locations. The mean (black line) and standard deviation (grey area) of the PoP are shown
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In the case of the seven plants species, prevalence at the 8,185
sites surveyedvaried from0.0408 (Blueberry) to0.2287 (Pedunculate
oak). As a result of the feature selection process, from eight (Sessile
oak) to 29 (Pedunculate oak) of the 43 variables (Table 2) were se‐
lected as the optimal subset size by the RF method (Table 3). The
achieved accuracies of the classification models for the seven plants
species were good (Table 4): AUC varied from 0.877 (Pedunculate
oak) to 0.969 (Beech), MCC varied from 0.281 (Blueberry) to 0.709
(Beech), TSS varied from 0.524 (Blueberry) to 0.750 (Beech), sensi‐
tivity varied from 0.559 (Blueberry) to 0.790 (Beech) and specificity
varied from 0.864 (Pedunculate oak) to 0.965 (Beech).

The functional form of the marginal response curves varied
among the plants species analysed (File S2); where the climate vari‐
ables were the most significant ones.

Beech forests in the Cantabrian Mountains appeared to be the
most affected under the two scenarios (RPC 4.5 and 8.5, for both
2050 and 2070), as they were reduced by the half under the mod‐
erate scenario and almost disappeared under the pessimistic one
(Table 5). The range of blueberries was also contracted to half its
current distribution, whereas range contractions >50% were exhib‐
ited by pedunculate and sessile oaks. The latter almost disappeared
under the pessimistic scenario for 2070 (Table 5). Range extensions
of chestnuts and Scots pines only slightly increased/decreased
(Table 5). These vegetation shifts under future climate scenarios for
2050 and 2070 are all reflected in the marked changes in distribution
(mean latitude and altitude), TA and fragmentation (MPA, LPI and AI)
of the plant species distribution (Files S2 & S3), such that under the
most extreme future scenario (RCP 8.5) there is generally little over‐
lap between current and future distributions (File S3).

As a consequence of the extensive range contractions of most
of the forest cover and blueberries in the Cantabrian Mountains, the
brown bear population appeared to drastically lose its geographic
range in the future (Figure 2), which: (a) is reduced by approximately
half under the moderate scenario, for both 2050 and 2070; and (b)
showed a dramatic contraction under the pessimistic scenario, for
both 2050 (24% of the current range only) and 2070 (12%; Table 5).
In addition to the range reduction, the brown bear population also
showed a range shift towards the north (Figure 2), which may be
mostly explained by: (a) the range shift of chestnuts towards the
north; (b) the range maintenance of the Pyrenean and pedunculate
oaks mainly in the north; and (c) the disappearance of blueberry,
beech and sessile oak from the current brown bear distribution
range (Figure 2).

Under both RCP 4.5 and RCP 8.5, the lower and the higher emis‐
sion scenarios respectively, latitudinal shifts and the AI of the brown
bear population only showed marginal changes (Figure 3). However,
all the other parameters decreased considerably including the TA
(see also bear range contraction in Figure 2) and altitude occupied
by bears, which decreased below 1,000 m a.s.l. This predicted de‐
crease in altitude supports the highlighted bear range shift towards
the north (Figure 2), that is where altitudes decrease because the
northern part of the study area is outside the bulk of the Cantabrian
Mountains.TA
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F I G U R E  2  Projected changes in the future range of: (a) seven plant species (blueberry Vaccinium myrtillus, beech Fagus sylvatica,
chestnut Castanea sativa, pedunculate oak Quercus robur, Pyrenean oak Quercus pyrenaica, sessile oak Quercus petraea and Scots pine Pinus 
sylvestris) that represent an important food resource and/or shelter for the brown bear in the Cantabrian Mountains (NW Spain); and (b)
the Cantabrian brown bear population. For each species the following are shown: (a) the current distribution models; (b) the distribution
models for 2050 and 2070, under both future emissions scenarios (RCP 4.5 and RCP 8.5); and (c) the range shifts in terms of gained (green),
maintained (yellow) and lost (red) surface areas (grid cells) for 2070 only, under both RCP 4.5 and RCP 8.5. (The photos were downloaded
from 123RF ROYALTY FREE STOCK PHOTOS, http://www.123rf.com; blueberry: ID16687172, sedneva; beech: ID9763793, Alfio Scisetti;
chestnut: ID90445888, Alfio Scisetti; pedunculate oak: ID10696871, Ralf Neumann; Pyrenean oak: ID31492439, Israel Hervás; sessile oak:
ID12474697, Israel Hervás; Scots pine: ID63105314, Juha Remes; brown bear: ID7250879, Eric Isselee). [Colour figure can be viewed at
wileyonlinelibrary.com]

http://www.123rf.com
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F I G U R E  2   (Continued)
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At sites where brown bear were present, the distribution of the
four climate variables shifts under the two future climate scenar‐
ios (RCP 4.5 and 8.5) for 2050 and 2070 (Figure 4). The future pro‐
jections reveal a large shift towards warmer summer temperatures
(BIO_10). The future projections also reveal a shift towards less an‐
nual precipitation (BIO_12), although the magnitude is small com‐
pared to that of the temperature‐related variables (File S4).

4  | DISCUSSION

Our simulations suggest that the geographic range of the seven
plant species used by brown bears as food and shelter in the

Cantabrian Mountains might respond in different ways under
future climate warming, with most bear resources reducing their
range. As a consequence, the available brown bear range in the
Cantabrian Mountains is expected to reduce (Figure 2) in the next
50 years, mostly due to the effect of climate change on vegetation
range shifts.

Current wilderness areas of the Cantabrian Mountains are
largely located in mountainous regions, which are expected to ex‐
perience some of the largest climatic changes (Root et al., 2003),
with montane species being subject to increasing temperatures
and changing precipitation regimes (Monzón et al., 2011). For ex‐
ample, among the recognized effects of global warming, we know
that: (a) drought reduces blueberry growth, as well as fruit size and

F I G U R E  2   (Continued)
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maturation (Bădescu, Asănică, Stănică, Bădescu, & Ungurenuș,
2017), an effect that is expected to be stronger at the southern limit
of its European geographic range, such as in northern Spain (Pato
& Obeso, 2012); (b) beech forests are particularly affected by an
increase in periods of drought in summer and heavy rains in autumn
and spring, which cause oxygen depletion in the soil, as well as by
their limited capability to take advantage of the increasing atmo‐
spheric CO2 content (Latte, Perin, Kint, Lebourgeois, & Claessens,
2016; Müller‐Haubold et al., 2013; Rennenberg, Seiler, Matyssek,
Gessler, & Kreuzwieser, 2004). Indeed, the beech is more drought
sensitive than other European broadleaved tree species, such
as oaks (e.g., Q. petraea and Q. robur) (Dulamsuren, Hauck, Kopp,
Ruff, & Leuschner, 2017), which supports the extreme beech range
contraction predicted by our model. Recent observations of long‐
term growth decline in beech forests at the southern edge of their
distribution (Italy and northern Spain) have already been linked to
drought effects associated with climate change (Dulamsuren et al.,
2017; Müller‐Haubold et al., 2013); and, as is widely recognized, (c)
more severe climate change scenarios may also affect tree species
otherwise relatively resistant, like pedunculate and sessile oaks
(Doležal, Mazůrek, & Klimešová, 2010; Dyderski et al., 2017). In
particular, sessile oak growth reduction is connected with water
deficit, that is, little growth in hot, dry conditions, especially for
trees growing in an oceanic climate (Doležal et al., 2010; Mérian,
Bergès, & Lebourgeois, 2014).

Range shifts of brown bear are expected to displace individu‐
als from wilder mountainous areas towards more humanizEd ones,
where we can expect an increase in conflicts and bear mortality
rates. Indeed, the distribution range of Pyrenean and peduncu‐
late oaks is expected to shift largely towards the north of Asturias
(Figure 2), closer to lowlands, where the density of people and human
infrastructures is highest. Here, the high density of crops, livestock,
human settlements and roads may increase rates of human‐bear
conflict and mortality. A similar increase in bear‐human conflict has
been suggested for grizzlies in North America due to the reduction
of white bark pine Pinus albicaulis forests as a result of climate change
(Mattson, Kendall, & Reinhart, 2001; Schrag, Bunn, & Graumlich,
2008). Without these forests, whitebark pine seeds become unavail‐
able as a food source which induces grizzlies to move to lower ele‐
vations to find alternative food sources, where they are more likely
to experience conflicts with humans. Such anthropogenic causes of
mortality, which have not been taken into account in our models, can
be additive to bear range contraction and produce an even greater
decline of the species during the 21st century. Additionally, the pro‐
jected reduction of Cantabrian plant species might also: (a) modify
the currently mostly vegetarian diet of bears (Fernández‐Gil, 2013;
Naves et al., 2006; Rodríguez et al., 2007), which may replace less
available fruits and acorns with more meat (Bastille‐Rousseau et al.,
2017); and/or (b) increase the interest of bears in apiaries and crops.
Both possibilities can increase the probability of local conflicts with

F I G U R E  3  Changes in the distribution (mean latitude and altitude), area (total area), fragmentation (mean patch area), largest patch
index (i.e., the percent of the bear population encompassed by the single largest patch) and aggregation index (a measure of fragmentation
that varies from 0 to 100, with zero reflecting conditions where all occupied grid cells are maximally dispersed from each other across the
landscape) of the brown bear population in the Cantabrian Mountains, under five scenarios: (1) the current reference period; (2) 2050 under
the RCP 4.5 emissions scenario; (3) 2050 under the RCP 8.5 emissions scenario; (4) 2070 under the RCP 4.5 emissions scenario; and (5) 2070
under the RCP 8.5 emissions scenario
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F I G U R E  4  Distribution of climate variables at sites where brown bears are present in the Cantabrian Mountains, under five scenarios: (1)
the current reference period; (2) 2050 under the RCP 4.5 emissions scenario; (3) 2050 under the RCP 8.5 emissions scenario; (4) 2070 under
the RCP 4.5 emissions scenario; and (5) 2070 under the RCP 8.5 emissions scenario. [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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humans and change the generally positive attitude that people cur‐
rently have towards brown bears in the Cantabrian Mountains.

Three additional negative effects on bears may be expected
as a consequence of the vegetation changes in the Cantabrian
Mountains. First, because acorns constitute the bulk of the autumn
and winter diet for this population (Naves et al., 2006), a drastic
reduction in oak forests may affect fat storage before den entry,
which is essential for successful hibernation and cub production
(Farley & Robbins, 1995b; Robbins, Ben‐David, Fortin, & Nelson,
2012). Indeed, a decrease in acorn consumption may reduce protein
intake from plant material, which might affect Cantabrian brown
bears during hyperphagia (Rodríguez et al., 2007). Bear reproduc‐
tion might be even more affected by this low protein intake under
the predicted warming climate. Yet, under future climate change
scenarios, winter temperature is expected to increase and conse‐
quently, the energy demands of hibernating mammals will increase
because the energetic costs of torpor increase, that is, less energy
can be allocated to reproduction during warm winters (Albrecht et
al., 2017; Humphries, Thomas, & Speakman, 2002). Secondly, under
such a scenario of low acorn availability, current rates of intraspecific
competition with other acorn consumers, that is, wild ungulates such
as the wild boar Sus scrofa and free‐ranging livestock may increase
(Naves et al., 2006; Rodríguez et al., 2007). Thirdly, because the
distances between oaks and blueberry bushes seem to be destined
to increase due to both their range shift and contraction (Figure 2),
bears might need to make larger displacements between seasons to
find main trophic resources. For example, increased distances be‐
tween the area inhabited by a typical summer food like blueberries
and oak forests, where bears get most of their autumn food, may
expose bears to greater risks than before (e.g., car collisions and in‐
creased energy consumption) because of the longer distances they
need to cover during the hyperphagia period. Indeed, the distribu‐
tion and availability of limited resources may be more spatially dis‐
persed and, thus, may influence bear space use. When resources are
not concentrated in space or time, individuals may require greater
areas to gain the resources necessary to sustain their body size and
successfully reproduce (Mangipane et al., 2018).

Because human pressure (e.g., land use, fire) in human‐modified
landscapes is already stressing several mammal species, it may pos‐
sibly enhance the negative influence that climate change will have
(Maiorano et al., 2011). For example, livestock grazing pressure has al‐
ready been observed to impact bear consumption of Vaccinium shrubs 
in the Cantabrian Mountains because of their reduced availability
(Fernández‐Gil, 2013; Rodríguez et al., 2007). As a consequence, cat‐
tle numbers and/or periods of grazing should be reduced within the
brown bear range in the Cantabrian Mountains, as already suggested
by Naves et al. (2006), Rodríguez et al. (2007), Fernández‐Gil (2013).

We consider it important to highlight here one limitation of our
study. In our projections, species distributions are only determined
by environmental factors controlling their niche (e.g., climate, soil and
topography/radiative), whereas tree plant distributions may also be
influenced by biotic interactions among species such as competition,
predation, amensalism and mutualism, further modulated by abiotic

disturbances like fires and forest management practices (Shirk et al.,
2018). Phenotypic plasticity and local adaptation may also modify
rates of tree species contraction and expansion (Valladares et al.,
2014), but the magnitude of the projected range shift for some
species might make relying on these natural mechanisms of resil‐
iency alone insufficient. Evidently, our projections on the impact
of climate change on the distribution and availability of bear food
plant species cannot take into account potentially complex adaptive
behavioural responses of bears, which are well‐known habitat gen‐
eralists (Roberts et al., 2014). The wide nutritional niche of brown
bears might allow them to cope with the nutritional challenges as‐
sociated with changes in the available food resources due to climate
change (Coogan, Raubenheimer, Stenhouse, Coops, & Nielsen, 2018;
Roberts et al., 2014). In spite of these caveats, our model predictions
allow us to make inferences on possible general patterns of future
plant range shifts and bear population dynamics under different cli‐
mate scenarios. Yet, there is a strong need to develop forecasts of
what could happen under different climate change scenarios given
certain assumptions (e.g., Bond, Thomson, & Reich, 2014; Li et al.,
2015) and accepting the basic assumptions and limitations of pre‐
dictive models, we regard our projections as a useful first step and
plausible null model to rely on for future bear conservation, rather
than assuming that the present distributions of brown bears and
their resources will remain unchanged.

The expected reduction and shift of brown bears and their
feeding resources/habitats in the Cantabrian Mountains will pro‐
foundly impact the conservation effectiveness of the current pro‐
tected areas (Su et al., 2018). Nevertheless, climate change will
likely reduce the distributions of bears in these reserves. It is thus
necessary to upgrade the spatial distribution of protected areas
to improve species protection under the processes engendered
by climate change (Hannah et al., 2007). The integration of poten‐
tial range shifts into conservation planning is a proactive way to
confront the effect of climate change on vegetation and conse‐
quently, on the animal species linked to the affected plant species.
Conservation plans that overlook potential range shifts have poor
expected outcomes for most species (Bond et al., 2014; Li et al.,
2015). Indeed, projecting future scenarios of forest shifts given cli‐
mate change predictions for the region can help inform conserva‐
tion planning to mitigate bear food and shelter range contractions.
For example, plant assisted colonization, i.e. intentionally moving
species to climatically suitable locations outside their current
ranges (Iverson &McKenzie, 2013), as well as assisted gene flow are
strategies being explored to maximize tree plant resistance and ad‐
aptation to a changing regional climate (Aitken, Yeaman, Holliday,
Wang, & Curtis‐McLane, 2008; Iverson & McKenzie, 2013; Travis
et al., 2013). For example, assisted gene flow might be used to in‐
troduce individuals with adaptive genotypes into populations that
lack those traits (Aitken & Bemmels, 2016). Given that natural col‐
onization is unlikely to occur within the projected range shift, as‐
sisted colonization into areas our study identified as suitable in the
future may also be warranted (Vitt, Havens, Kramer, Sollenberger,
& Yates, 2010). Thus, our results provide a preview of the potential
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future distribution of shrubs and tree species suitable for brown
bear food and shelter, providing lead‐time to enact forward‐look‐
ing strategies designed to conserve forest ecosystems within the
study area. The magnitude of the forest changes projected by our
models emphasizes that, to conserve the Cantabrian brown bear
population, conservation practices only focused on bears may not
be appropriate; rather, we also need more dynamic conservation
planning aimed to reduce the impact of climate change in the for‐
ested landscapes of the Cantabrian Mountains. One strategy is to
accept the future changes in species ranges and to focus on those
areas into which these species will move (Monzón et al., 2011).
Thus, together with conservation actions aimed at maintaining
bears in their historical and current ranges, we encourage prac‐
tices targeted at managing species range shifts and which start
to conserve and manage those areas potentially favourable to be
inhabited by bears as a consequence of the modifications due to
climate change. As we cannot force plant species to remain in a
geographical space that no longer represents their evolved climate
envelope or animal species to persist where their main resources
have disappeared, a pre‐emptive strategy based on climate change
shifts may be better aligned with reality.
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