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Summary

1. Themovements of individuals – at almost any scale – are likely to depend on the behaviour of conspecifics. As

an example, the movements of dispersing juveniles and their settling decisions may depend on the availability of

mates and free territories, that is, both the presence and absence of other individuals. As another example, indi-

viduals can use the presence of conspecifics during foragingmovements as an indicator of habitat quality.

2. We develop a general statistical framework for identifying and characterizing conspecific influence on move-

ments from tracking data acquired simultaneously from a set of potentially interacting individuals.

3. We model conspecific attraction/repulsion through a functional response in which social behaviour is

assumed to depend on proximity to other individuals. The model partitions variation in the functional response

into a population component (common to all individuals), variation among individuals (modelled as random

intercept-slope) and variationwithin an individual’s trajectory (modelled through temporal autocorrelation).

4. We present a Bayesian approach for the estimation of the model and illustrate its use with simulated move-

ment data generated from a number of contrasting scenarios.We then apply the method to a case study on eagle

owl Bubo bubo juvenile dispersal, demonstrating that individual movements are generally influenced by the pres-

ence of conspecifics, with the level of attraction decreasingwith increasing proximity to other individuals.We fur-

ther show that female eagle owls are more attracted to conspecifics than males, and both males and females are

more attracted to females than tomales.

Key-words: behavioural rules, condition-dependent dispersal, mixed-effect model, model/data,

social information, statistical inference

Introduction

The presence of conspecifics can influence individual move-

ment patterns, with important consequences in many ecolog-

ical and evolutionary contexts, such as foraging (e.g.

Kawaguchi, Ohashi & Toquenaga 2006), mate choice (e.g.

Kuussaari et al. 1998), habitat selection and space use (e.g. Ser-

rano et al. 2003). Depending on the relative costs and benefits

of conspecific aggregation, individuals may be attracted to or

repulsed from other individuals. The strongest benefit of con-

specific attraction is expected to take place at intermediate den-

sities, as at low population densities social cues are typically

unavailable, whereas at high population densities, the potential

costs of competition may outweigh the benefits from conspe-

cific attraction (Fletcher 2006, 2007). The presence of conspe-

cifics can lead to different behavioural actions, the decision

rules behind which can be at least partly inferred from the

realized movement patterns (Bode et al. 2012). In some cases,

individuals may primarily follow their nearest neighbours

(Hemelrijk et al. 2008), or they may use local density as a cue

(Delgado et al. 2010). In many cases, movement strategies are

context-dependent and change over time, either gradually or

through discrete behavioural switches (Morales et al. 2004).

The influence of conspecifics on animalmovements has been

extensively studied with the help of mathematical models and

simulations, especially to understand the underlying mecha-

nisms behind many forms of animal aggregation (e.g. Couzin

et al. 2002). For example, simple behavioural rules have been

shown to lead to patterns of collective motion, which are at

least qualitatively similar to those observed for flocking birds,

schooling fish or swarming insects (e.g. Couzin et al. 2002).

Some of thesemodels have been successfullymatched to exper-

imental data (e.g. Couzin et al. 2011; Herbert-Read et al.

2011; Katz et al. 2011), but typically not at the temporal reso-

lution at which individuals make their movement decisions. If

movement decisions are linked to various types of potentially

conflictingmotivations (e.g. food searching, predator/competi-

tor avoidance, sampling of potential nesting habitat, or mate

search), they may also be made at different temporal resolu-

tions. In addition, even thoughmovement data are intrinsically*Correspondence author. E-mail: maria.delgado@helsinki.fi
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complex, with many levels of structure and heterogeneity,

previous models have often assumed fairly simplistic rules (e.g.

they usually assumed that all individuals operate according to

some behavioural rules; Couzin et al. 2002; Eriksson et al.

2010; Katz et al. 2011), with extensions such as context-depen-

dent interactions having only recently emerged (Guttal &Cou-

zin 2010).

In this article, we develop a simple but general statistical

framework for studying whether and how the presence of con-

specifics influences animal movement at the individual level.

We proceed in two steps, first looking for signals of conspecific

influence by comparing the observed movement behaviour to

that predicted by a null model. We then use a regression model

to partition the variation in the patterns of social information

use into components corresponding to density-dependent

attraction or repulsion, variation among individuals and varia-

tion within individuals. Beside its simplicity, this framework

allows incorporating the intrinsic complexity of movement

data, and the many levels of structure and heterogeneity in

movement behaviour (e.g. across space and time, among indi-

viduals, within individuals). We examine the performance of

the statistical framework with simulated data and apply the

framework to an analysis of eagle owl natal dispersal. The con-

ceptual idea behind the statistical framework is illustrated in

Fig. 1.

Materials andmethods

NULL MODELS

Whether individuals are attracted to or repulsed from conspecifics can

be measured by comparing observed displacements to those predicted

by a null model, which describes the expectation in case themovements

of the focal individual were not influenced by conspecifics (Fig. 1). Let

z(t) = (x(t), y(t)) denote the location of the focal individual at time t.

Assuming that two consecutive data points on the location of the focal

individual have been acquired at times t1 and t2, we ask if the observed

location z(t2) is in some way different from what would be expected

from the knowledge of the location z(t1) and the null model of move-

ment between the times t1 and t2. In the ideal case, the null model

should account for all factors influencing movement behaviour except

conspecifics, so that any deviation between the data and the null model

could be attributed solely to social factors. While sophisticated model-

ling approaches for individual movement have been developed (e.g.

Patterson et al. 2008), the definition of an appropriate null model is a

highly non-trivial task to which we return in the Discussion. In the

analysis of data generated by simulationmodels, we simply assume that

in the absence of conspecifics, the individual would have taken amove-

ment step with length equal to that of the observed movement step

|z(t2) � z(t1)|, but in a totally random direction (uniform in the range

from 0 to 2π; a model often referred to as the simple random walk).

With this choice, the probability distribution of null locations consists

simply of those locations that form a circle around the previous loca-

tion z(t1), the observed location z(t2) being one point on the circle

(Fig. 1b).

MEASURES OF PROXIMITY AND SOCIABIL ITY

After deciding on the null model, one next needs to specify how to com-

pare the observed location z(t2) with the distribution of null locations.

To do so, we defined measures of proximity P and sociability S. We

measure proximity P using two alternatives, both of which increase

with increasing local density of individuals. Proximity measure 1 (here-

after, nearest neighbour) is defined as the negative of the shortest dis-

tance to any of the other conspecifics. Proximity measure 2 (hereafter,

density) is defined as the density (number of individuals per unit area)

of conspecifics within a specified radius d from the focal individual.

Note that the selection of these indexes (e.g. whether to use the negative

of the shortest distance, the inverse of the shortest distance, either of

the above for the log-transformed distance, the number of other indi-

viduals within a fixed radius and the density of individuals smoothed

by a kernel with continuous distance decay) will in most cases be neces-

sarily somewhat arbitrary due to lack of information to which aspect of

proximity the individuals respond to. The selection should be based on
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Fig. 1. Panel (a) shows the relationship between current proximity (P) to other individuals and the expected sociability (S) for three hypothetical sce-

narios: (i) individual attracted to other individuals irrespective of its current proximity (blue line), (ii) individual attracted to conspecifics at low but

repulsed at high density (black and red lines) and (iii) individualmoving independently of conspecifics (dashed line). Panel (b) illustrates how sociabil-

ity can be measured frommovement data. Large dots represent the focal individual at its initial position (black dot) and after a movement step (red

dot). Small dots show the locations of six other individuals. After the movement step, the focal individual is close (39 m) to where one of the conspe-

cifics was initially. The random expectation, averaged over locations within the blue circle, is 69 m; thus, the focal individual showed attraction

(St1 = 30 m). Panel (c) shows the median estimates of the functional response for the owl case study. The red and blue lines correspond to the focal

owl being a female or male, respectively. The line style indicates how proximity to other individuals is measured: all individuals (continuous line),

females only (dashed line) ormales only (dotted line).
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biological considerations such as whether the absolute or relative dis-

tances are likely to be relevant (whether to log-transform or not), and

on statistical considerations, that is, what kind of distributions of the

explanatory and/or response variables arise when a given kind of index

is applied to the data in hand.

We define the sociability measure S as the difference between the

observed and null proximity measures: S = Pobs – E [P null]. Here,Pobs

is the observed proximity of the focal individual to the other individuals

after it has taken amovement step, andE [Pnull] is the expected proxim-

ity over the distribution of null locations. Assuming that the individuals

make their movement decisions based on the locations of the other

individuals at time t1, the proximity of the location z(t2) should be mea-

sured against the locations of conspecifics at time t1. We denote the

sociability measure corresponding to this choice by St1 . If the individ-

ual continuously tracks the other individuals (as may often be the case

for real individual movements), the sociability measure should be eval-

uated by the locations of conspecifics at time t2; we denote this sociabil-

ity measure as St2 . The inferential difference between St1 and St2

depends on howmuch the other individuals move during one time step

and hence on the product between the time interval and the movement

speed. The measures St1 and St2 quantify whether the focal individual

at z(t2) is closer or further away than expected by the null model from

where its conspecifics were at times t1 and t2, respectively. A value of

S > 0 can be interpreted so that the focal individual was attracted by

conspecifics, whereas S < 0 indicates that the focal individual avoided

conspecifics.

STATIST ICAL MODELS

The response variable in our model is Sit, that is, the observed sociabil-

ity of individual i based on the movement step that started at time t.

Themain covariate isPit, the proximity of the individual to conspecifics

at time t. We normalized Pit to zero mean and unit variance, and Sit to

unit variance, but did not normalize the mean of Sit to zero as it is of

interest to ask whether the individuals are on average attracted to or

repulsed from conspecifics. For simplicity, we assume the linear regres-

sionmodel.

Sit ¼ lþ lHi þ lTit þ ðbþ bHi þ bTit ÞPit þ eit;

where the intercept l estimates the population mean level of sociability

and the slope b the effect of the proximity of conspecifics on sociability.

The model has two random components that relate to population het-

erogeneity (superscript H for random variation among individuals)

and to temporal heterogeneity (superscript T for random variation

within individuals over time). Both of these random components are

assumed to follow bivariate normal distributions with covariance struc-

tures CovðaHi ; bHi0 Þ ¼ dii0R
H
ab and CovðaTit ; bTi0t0 Þ ¼ dii0 R

T
abfðt; t 0;TÞ,

where a, b ∊ {l, b}. Here, ΣH and ΣT are 2 9 2 variance–covariance

matrices, and dit0 is Kronecker’s delta specifying that the effects are

independent among the individuals. We model temporal autocorrela-

tion assuming exponential decay at temporal scale T, f(t, t’, T) = exp

(�|t � t’/T) and assume that the residual variation eit follows normal

distributionwith zeromean and variancer2.

We used Bayesian inference to estimate model parameters. The

choices of priors for model parameters (l, b,ΣH,ΣT,T and r2), as well

as a description of theMarkov chainMonte Carlo (MCMC) algorithm

used to sample the posterior distribution are described in Appendix S1.

We examined how the squared response in the fitted model V = E [S2]

is split up into the four components of the model (1): variation VP

related to population mean, variationVH related to population hetero-

geneity, variation VT related to temporal heterogeneity and residual

variation VR. Expanding S
2 and noting that the covariate P is normal-

ized to zero mean and unit variance, these can be written as

VP ¼ l2 þ b2;VH ¼ RH
llR

H
bb;VT ¼ RT

ll þ RT
bb and VR ¼ r2:

GENERATION OF SIMULATED DATA

The simulations were conducted in a square with area 10 9 10 km.

We assumed the average density to be one individual per km2, and the

simulation was initialized by randomizing the 100 individuals accord-

ing to complete spatial randomness (CSR). With CSR and density

1/km2, the mean distance to the nearest neighbour is 500 m, with 95%

quantile ranging from 90 m to 1�1 km (Kingman 1993). To mimic infi-

nite space, we assumed toroidal boundary conditions. We simulated

the chosen process with day as a time step, first removing a transient of

100 days and then collecting data for T = 100 days. In all models, indi-

viduals moved with constant steps of 100 m each day. The decision of

where to move next (day t + 1) was based on information about the

current location of the other individuals (day t).

Data were simulated according to the following six scenarios. In

Scenario 0 (independent movements), the direction of the next step

is random. In Scenario 1 (preferred distance to the nearest conspe-

cific), the focal individual prefers to have a distance of 250 m to the

nearest conspecific, thus creating a tendency to form aggregations

with circa fourfold density relative to the case of CSR. The individ-

ual samples k = 5 potential locations at random directions from the

present location and chooses the one which is closest to its prefer-

ence. Note that higher values of k would lead to more deterministic

movements towards the preferred state, whereas k = 1 would result

in a simple random walk; k therefore captures the completeness of

the individuals knowledge of its surroundings. In Scenario 2 (pre-

ferred local density of conspecifics), the individual prefers to have 12

other individuals in a circle of 1 km radius from its location, corre-

sponding again to ca. fourfold density compared with the mean den-

sity. As in Scenario 1, the next location is selected as the most

preferred one among k = 5 randomly selected locations. In Scenario

3 (heterogeneous population), half of the individuals are socially

independent and half socially dependent, the rules being like in Sce-

narios 0 and 1, respectively. In Scenario 4 (behavioural switching),

we consider that individual decisions regarding conspecifics might

change over time depending on different ecological circumstances

(e.g. predation risk, resource depletion), and thus, each individual

has two possible behavioural modes, socially independent and

socially dependent, the rules being as in Scenarios 0 and 1, respec-

tively. The initial condition is as in Scenario 3, after which at each

time step, each individual switches its mode with probability p = 0�1.
In Scenario 5 (confounding factors), we simulated an underlying

resource distribution that changes in time and space. Resources are

modelled as points, which are initially randomly distributed over the

domain with density q = 0�1 per unit area. At each time step, each

resource point is displaced (i.e. disappears and appears in a new ran-

dom location) with probability q = 0�1. Each individual samples

k = 5 locations and selects the one that is closest to the nearest

resource point, independent of the presence of conspecifics. Under

this scenario, individual movements may appear to be dependent

on the behaviour of conspecifics, though there are no direct social

interactions.

We first asked whether the statistical models described in the previ-

ous section are structurally adequate for capturing the mechanisms

behind the individual-based simulation models described in this sec-

tion. Here, we assumed the availability of much data (100 steps

observed for 100 individuals) and applied the proximity measure that
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corresponded to each of the scenarios (density at spatial scale of 1 km

for Scenario 2, nearest neighbourmeasure for the other scenarios). Sec-

ondly, to ask whether the model could correctly identify the spatial

scale at which the decisions were made in the simulations, we fitted the

data on Scenarios 1 and 2 with both proximity measures (for density

with spatial scales d = 0�25, 0�5, 1�0, 2�0, 4�0 km). Finally, we assessed

the performance of the statistical models to work with incomplete data

by modifying the Scenarios 3 and Scenario 4 as follows. To examine

the effect of missing individuals, we assumed that we had data only on

25 or 50 of the 100 individuals. To examine the effect of the sampling

interval, we subsampled the data twofold or fourfold, resulting into 50

or 25 observed movement steps during the study period of T = 100

days.

EMPIRICAL DATA ON EAGLE OWLS

We focus here on the wandering phase of dispersal, that is, when

individuals explore different areas for a variable time period before

settling in a new area (Delgado et al. 2010), of 55 juvenile eagle owls

(36 males and 19 females) radiotagged in south-western Spain during

the years 2003–2007. Owls were located at their diurnal roosts

(n = 766; 538 locations for males and 228 locations for females), the

data including on average 12�8 (SD = 7�1) observations for each indi-

vidual, sampled on average at 10�5 day (SD = 11�6) intervals. Loca-
tions were obtained using triangulation with a three-element hand-

held Yagi-antenna connected to ICOM portable receivers. We used a

slightly modified version of the statistical modelling framework

described above to ask whether and how owls responded to conspecif-

ics during dispersal. First, when computing P null, we accounted for

variation in step lengths by fitting a linear model log(step length) ~

log(duration of sampling interval) separately for each owl (average R2

value of the linear models = 0�20, ranging from 0�00001 to 0�92) and
then used these models to sample step lengths in the null model. Thus,

the response variable Sit here reflects not only whether the owl

avoided or was attracted to other owls in terms of the direction, but

also in terms of the distance it moved. By randomizing the distance

for each step rather than using a fixed step length makes the null

model more realistic. Even though the data behind the null model (i.e.

the actual movement data) are necessarily influenced by conspecifics,

the null model averages over all kinds of conditions that the individ-

ual has encountered during the data collection period. Secondly, we

accounted for a possible preference for habitat by accepting in the null

set only locations which consisted of the same habitat as the location

the individual moved to in reality (see Delgado et al. 2010 for habitat

classification). The error in radiotracking localization (accuracy of

mean � SE = 83�5 � 49�5 m; Delgado et al. 2010) was small com-

pared with the sizes of habitat patches on the landscape (mean patch

size � SD = 4�8 � 133�9 km2). Thus, the possibility of erroneously

classifying the habitat association of each location was negligible in

this study. As location data for all individuals were not obtained

simultaneously, the locations of the other owls were typically not

known exactly at the time when the observation of the focal owl was

made. As a simple solution to this problem, we used linear interpola-

tion between observed locations to estimate the location of each owl

at any time. Interpolated locations landed in almost all cases in habi-

tats used by owls during dispersal (see Appendix S4).

We assumed that individual movement response to the social envi-

ronment may depend on the state of the individual, for which we con-

sidered the three variables of (1) sex, (2) body condition index (BCI)

and (3) haematocrit index. Higher values of parameters 2 and 3 corre-

spond to better individual condition (for more details on the empirical

study and the measurement of these two indices, as well for earlier

results, see Delgado et al. 2010). We modelled the effect of the individ-

ual as lHi ¼ Rkxkick þ lRHi ; bHi ¼ Rkxki0k þ bRHi ; where xki is the

covariate of type k = 1, 2, 3 measured for individual i, and parameters

ck and ϑkmeasure the effect of covariates on the behavioural rule, that

is, to the overall level of sociability and its dependence on conspecifics.

The residual components of variation lRHi and bRHi were modelled as

lHi and bHi in the original model. To explore whether individuals were

responding to overall conspecific density or specifically to the density

of the same or opposite sex, we fitted the models so that proximity

(and thus also sociability) was based solely on females or males. The

statistical models were implemented in Mathematica (source code and

binaries can be found in supplements).

Results

In general, the partitioning of variance in the fitted statistical

models was consistent with the simulated behaviour of the

individual-based models. When movements were not affected

by conspecifics (Scenario 0; Fig. 2a), almost all model variance

was assigned to the residual. For Scenarios 1 and 2 (Fig. 2b,c,

respectively), almost all of the non-residual variance was

assigned to componentVP, indicating that the individuals were

similarly affected by their social environment. For the case of a

heterogeneous population (Scenario 3; Fig. 2d), a substantial

amount of variationwas assigned to componentVHmeasuring

variation among individuals. For the case of behavioural

switching (Scenario 4; Fig. 2e), a considerable proportion of

variation was assigned to componentVT,whichmeasures tem-

poral heterogeneity within the individuals. In this scenario, the

temporal scale of the autocorrelation reflected the frequency

with which the individuals switched their behaviour. In the

case where the individuals tracked the changing distribution of

resource points (Scenario 5; Fig. 2f), the fitted statistical model

resembled that of behavioural switching, though with a low

scale of temporal autocorrelation. Figure 2 shows that for

both Scenarios 1 and 2, the best model fit in terms of lowest

residual variance was obtained for the statistical model with

nearest neighbour proximity. We note that for Scenario 2, a

large amount of variation in this model was assigned to tempo-

ral heterogeneity VT with temporal scale T very close to zero;

in this case, the variance component VT is equivalent to resid-

ual variation (see Appendix S1). Therefore, for Scenario 2 the

best fitting statistical model was the one where proximity is

based on individual density within 1 km around the focal indi-

vidual, that is, the model that corresponds with the simulated

scenario.

These results indicate that the statistical models can cor-

rectly describe the underlying movement behaviour when

abundant and high-quality data are available. As expected, the

ability of these models to disentangle the variance components

decreases both with the number of missing individuals and

with the length of the sampling interval (Fig. 2d,e). The identi-

fication of population heterogeneity is more sensitive to the

number of sampled individuals than to the sampling interval,

whereas data for many steps per individual are required to

identify behavioural switching. Repeating the analyses with

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 5, 183–189
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measure, St2 lead to similar results thoughwith a slightly worse

model fit thanwithmeasure St1 (Appendix S2).

EMPIRICAL DATA ON EAGLE OWLS

In the case of eagle owls, the proximity measure leading to the

smallest residual variation was the nearest neighbour measure

(Fig. 2g, Appendix S3). In this model, the variance was

partitioned as VP = 0�14 (95% highest posterior density inter-

val 0�06–0�25), VH = 0�18 (0�09–0�32), VT = 0�43 (0�26–0�60)
and VR = 0�23 (0�11–0�40), indicating a substantial amount of

variability both among individuals and within individuals, the

latter with temporal scale T = 5�9 (3�4–10�5) days. Owls were

generally attracted to conspecifics, the strength of the attrac-

tion decreasing with increasing proximity (Fig. 1c). Females

weremore attracted to conspecifics thanmales, and bothmales

(a) (f) (g)

(b)

(c)

(d)

(e)

Fig. 2. Performance of the statistical framework for inferringmovement behaviour from simulated (a–f) and eagle owl (g) data, including the ability
of the models to pinpoint the spatial scale at which the individuals asses proximity (for Scenarios 1 and 2), and the effect of sample size in terms of

number of tracked individuals and the sampling interval (for Scenarios 3 and 4). In all panels, bars show averages (over replicates and posteriors) of

the four variance components. The smaller (bold) error bars show parameter uncertainty measured as 95% quantile in the posterior distribution

(averaged over replicates). The larger (light) error bars show additionally variation among replicates (minimal andmaximal values among the 10 rep-

licates). NN: nearest neighbour proximity measure. The time-scale (T) is the time-scale of temporal autocorrelation. For parameter values, see main

text.
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and females were more attracted towards females than males

(Fig. 1c). Owls in good condition were generally less attracted

to conspecifics than owls in poor condition, but this statement

obtained only limited statistical support (Appendix S3).

Discussion

We have presented a statistical framework for inferring the

influence of conspecifics on movement behaviour and illus-

trated its use both with simulated data and with a case study

on eagle owl dispersal. Unlike much of the earlier work on col-

lective movement behaviour (e.g. Couzin et al. 2002; Guttal &

Couzin 2010), our approach is not based on specific assump-

tions about the underlying mechanisms, but is purely statisti-

cal. Our framework is related to previous approaches

developed to infer drivers of animal space use patterns such as

step selection functions (SSF; Fortin et al. 2005) in the sense

that the locations of other individuals can be considered as a

spatial factor that influences the individual movement deci-

sions. In our framework, we have included all other aspects

normally included in SSF (i.e. those related to habitats, move-

ment modes etc.) in the null model and thus separated them

from the influence of conspecifics. The first reason for doing so

is that this allows making the conceptual framework related to

proximity and sociability (Fig. 1) explicit. The second and

somewhat related reason is that this allows for a more straight-

forward interpretation of the statistical model. The advantage

of the present approach is in its generality: it can be applied to

almost any movement data on interacting entities. However, a

more mechanistic approach tailored to the specifics of a given

case study is likely to yield more detailed information. Thus,

we see our approach as a first step in the analysis of movement

data potentially influenced by conspecific behaviour.

We have developed our approach in the context of hierarchi-

cal Bayesian models, which are becoming increasingly popular

inmany studies of ecological and evolutionary processes (Cres-

sie et al. 2009), largely due to their flexibility in the accommo-

dation of multiple levels of dependency, modelled through the

effects of covariates and correlation structures (Gillies et al.

2006). We have selected the use of Bayesian statistics mainly

for the reasons of computational feasibility. However, as our

model is simply a regression model with fixed and random

effects (Dingemanse et al. 2012), it could also be fitted to the

data using frequentist techniques. In either case, the practi-

tioner needs to carefully check (as in any modelling exercise)

that the assumptions of the model (such as normality and

homoscedasticity of residual variance) are met, though our

results based on simulated data turned out to be robust even

though these assumptions were not necessarily alwaysmet.

As demonstrated by the application of the model to data

generated through the simulation of different scenarios, the

estimated variance components can be related in a biologically

meaningful way to the actual mechanisms behind socially

informed movement decisions. The main reason for focusing

here on variance partitioning is that we found it to be the sim-

plest and most robust way to quantify the importance of each

behavioural component. In practice, if a practitioner fits

our statistical model to their data, then the question of ‘are the

individuals responding to each other and in which way?’ can

be addressed by looking at how much of the total variation is

assigned to each component of the statistical model. In the

eagle owl example, we found that dispersing individuals were

attracted to others and that their movement rules varied not

only among individuals, partly explained by measured varia-

tion in their internal states, but also within individuals.

There are two important considerations to be made when

applying the framework developed here. First, the temporal

resolution at which individualsmake their movement decisions

is usually unknown a priori. If individuals are sampled at very

coarse temporal resolution, the statistical power for detecting

interaction effects may be limited (Dingemanse et al. 2012), as

we illustrated by subsampling the simulated data. On the other

hand, if individuals are sampled at a temporal resolutionmuch

higher than the interval at which movement decisions are

made, then consecutive data points become statistically depen-

dent on each other, potentially leading to a false impression of

behavioural switching. This may be partially mitigated by hav-

ing a more sophisticated null model, which includes autocorre-

lation in themovement.

Secondly, the fact that individuals live or move in a group

does not necessarily imply that they interact socially (Bode

et al. 2012). As demonstrated by the simulated Scenario 5, if

individuals are attracted to the same resources (e.g. food or

shelter), their movements may appear to be socially dependent

even if this is not the case. It is worth noting the fact that, in this

scenario, the scale of the behavioural responses of individuals

is likely to be affected by the spatial aggregation and the tem-

poral predictability of resources that we considered (e.g.

Fauchald & Tveraa 2006). Again, in theory, this problem can

be mitigated using a more sophisticated null model, in which

all the non-social factors influencingmovements are accounted

for. This is by no means a trivial task, as many of these factors

are likely to be unknown, and even the influences of the known

factors can be hard to quantify reliably. Therefore, when

applying our method to any real movement data, the practi-

tioner needs to carefully think about the selection and parame-

terization of the null model, as in theory, the null model should

incorporate all other factors influencing movement decision

excepting the influence of conspecifics. While it is clear that the

construction of a perfect null model is difficult if not possible,

any other approach attempting to pinpoint the influence of

conspecifics on movement decisions from non-manipulative

observational data necessarily has the same shortcoming of the

results being sensitive to the assumptions made on other fac-

tors influencing movement behaviour. Whatever the object of

analysis, the choice of the temporal scale at which individuals

are to be sampled, the construction of the appropriate null

model and the interpretation of the statistical results all require

a good understanding of the ecology and life history of the

study species.

Our simulation experiments illustrate the ability of the pro-

posed statistical framework in pinpointing different kinds of

underlying mechanisms behind movement behaviour, as well

as how its statistical power may depend on some issues
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common in real data (such as missing individuals). However, it

was not feasible in this study to exhaustively address all possi-

ble ways in which different confounding factors (e.g. spatial

and temporal changes of habitat quality across the landscape)

may lead to similar movement patterns than those generated

by interaction individuals. When applying the method pre-

sented here, we encourage the practitioner to perform simula-

tions that emulate the potential confounding factors of the

system under study.

As was the case with the owl study, spatial positions are

often not taken simultaneously for all individuals. Linear inter-

polation, or any other method to estimate the missing loca-

tions, will add noise to the measures of proximity and

sociability, and thus, it is likely to reduce the ability of the sta-

tistical framework to detect non-random behaviour, making

the results conservative.

Our study illustrates the general applicability of hierarchical

Bayesian models in ecology (Clark 2005). The framework we

have developed applies in principle to movement data on any

kinds or particles, from organelles within cells to GPS tracking

data on large animals. In particular, reintroduction projects in

which animals are released into areas where conspecifics were

absent are among the kind of studies for which this method

might be most appropriate. Themain limitation of the applica-

tion of the methods is the need of high resolution movement

data acquired simultaneously for a sufficiently large number of

individuals. While such data are currently still rare, we expect

that the ongoing revolution in tracking technology (Cagnacci

et al. 2010) will result in a high flow of such data in future.
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