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In many behavioural, ecological and evolutionary trade-offs, patterns and trends, the same/
similar outcomes are often expected from the different initial conditions. One of the most
frequently encountered problems in ecology is how to disentangle two or more different
hypotheses possibly explaining the emergence of an ecological pattern based on limited
data that would fit both. Using previously published interaction patterns between floaters
and breeders of an eagle population (Penteriani et al., 2006), it was possible to detect and to
find an explanation to the singular case of the emergence of a similar ecological pattern
under two very different scenarios, that is when different factors are affecting the intrinsic
dynamic of a population.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Population ecologists are interested in the mechanisms
behind any observed pattern and pattern formation can play
a very important role in ecological and evolutionary systems.
However, we can be recurrently confronted to complicated
dynamics and fuzzy distribution patterns (Savill and Hogeweg,
1999; Nowak and May, 1992; Nowak and Sigmund, 2000). In
fact, one of the most frequently encountered problems in
ecology is how to disentangle two or more different hypoth-
eses possibly explaining the emergence of an ecological
pattern based on limited data that would fit both. On one
hand, the analysis of the spatio-temporal patterns in popula-
tion dynamics calls for a large amount of data, which are
seldom available (Sundell et al., 2004). On the other, several
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examples in the scientific literature show that frequently
several distinct factors, as well as their interaction, may
determine similar patterns that made interpreting patterns
difficult (e.g. Bolker and Pacala, 1997; Ranta et al., 1998;
Bjgrnstad et al., 1999; Ruetz et al., 2005; Heath, 2006).

Equifinality is a concept strictly related to inferential fallacy
(Alker, 1969), quite relevant to, but probably often overlooked
by, analyses on animal population dynamics and regulation
when they deduce individual processes from wide patterns.
Not surprisingly, mistakes may arise from inferring processes
or patterns at one level of analysis from those occurring at
another level.

Equifinality has been invoked in many fields, e.g. biophy-
sics (Bartsev and Bartseva, 2002), geosciences (Haines-Young
and Petch, 1983; Schulz et al., 1999; Savenije, 2001; Sleewaegen
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Fig. 1 - Equifinality in breeding performance, that is, different departure conditions of a breeding population can determine
similar breeding performances. The examples (patterns of breeder fecundity under different levels of floater mortality; from
Penteriani et al., 2006) highlight that the same values of mean fecundity can appear in the same breeding population under
extremely different situations (e.g. saturated and stable population vs. increasing or unstable population), due to variations
of levels of floater mortality within settlement areas. Gircles in (A) indicate two of the most extreme cases, in which the
population shows the same fecundity at very different population densities (more than 20 pairs vs. less than 10 pairs). (B)
(population with the age at first reproduction of 3 years and 20 breeding pairs) and (C) (population with the age at first
reproduction of 5 years and 10 breeding pairs) show two additional cases in which similar patterns in breeding
performance may arise under different biological scenarios, i.e. when simulating different ages at first reproduction and

population thresholds.

et al.,, 2003; Wilby, 2005), the life cycles of parasites (Gulyaev,
1997), physiology (Popescu and Rymer, 2000; Hinder and
Milner, 2003; Feldman and Latash, 2005), psychology (Santoro
et al., 1997; Mathieu et al., 2005) and zooarchaeology (Marean
et al., 1992). For all these field, the concept of equifinality was
associated to the idea that both: (a) a pattern, a trend or a
shape can have different origins, i.e. can be the result of
different causes, combinations of parameters, factors or
pressures and (b) the end result is the same independently
of the causes or stimuli that engendered it (e.g. movement end
points are unaffected by either different perturbations or by
variations in the starting point of the motion; Popescu and
Rymer, 2000). Similarly, human medicine appeals to equifin-
ality when the same symptomatic or syndromatic clinical
diagnostic individual can represent different initial conditions
that lead to the same clinical endpoint (Avissar and Schreiber,
2002). As an end result, and as recently highlighted by Beven
(2006), the concept of equifinality allows us to focus our
attention on the potential risk that *“. .. there are many acceptable
representations that cannot be easily rejected and that should be
considered in assessing the uncertainty associated with predictions”.
For example, in the field of geomorphology (Beven, 2006), the
term equifinality indicates that similar landforms might arise
as a result of quite different sets of processes and histories.

Recently, the effects of the mortality of floaters (i.e.
dispersing individuals able to enter as breeders in the
reproductive population when a breeding territory or a potential
mate - owner of a suitable breeding territory — becomes
available) on the stability of a breeding population of Spanish
imperial eagle Aquila adalberti were analysed by individually-
based simulation models simulations (Penteriani et al., 2005a,b,
2006). In particular, when analysing how different rates (from 5
to 30%) of floater mortality could affect the mean fecundity of a
breeding population under two different scenarios (i.e. when
the gradient of the age at first reproduction varied from 3 to 5
years and for population thresholds of 10, 15 and 20 breeding
pairs), the patterns shown by the density-dependent fecundity
(see Penteriani et al., 2006 for more details) highlighted the
occurrence of a singular phenomenon within the breeding
population. In fact, fecundity showed similar values for
different rates of floater mortality (i.e. different pressures
acting on the population; Fig. 1, grey circles). This means that
such similar values of fecundity can be the result of (at least) two
different factors acting on the population: (a) a density-
dependent effect due to population saturation (upper circle of
Fig. 1) or (b) high mortalities acting on floaters (lower circle of
Fig. 1). That is, two very different initial conditions (i.e. a stable
and saturated population or high rates of floater mortality
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determining a decrease in the population) may determine
similar patterns (i.e. the same values of mean fecundity) in a
population. That is, equifinality (sensu von Bertalanffy, 1950)
appears to be an intrinsic property of the breeding performance
of animal populations. To my knowledge, this is the first time
thatequifinality has been detected in the breeding performance
of animal populations. This result was supported by non-
significant statistical outputs (see Penteriani et al., 2006), since
no statistical analysis can distinguish between processes that
are truly equifinal (von Bertalanffy, 1950).

Such an example shows us that we need to carefully take
into consideration all the possible processes that can be
responsible of the patterns that we observe in animal
population, equifinality being able to engender mistakes in
our perception of population dynamics. Above all, the
possibility that equifinality could represent a new bias in
our understanding of the dynamics of animal populations
needs to be considered as the opportunity to move further and
further in our analyses on animal populations, which could
engender the opportunity to discover unsuspected factors
(both intrinsic and extrinsic to a population) determining the
patterns that we observe.
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